首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   10篇
  国内免费   2篇
电工技术   8篇
化学工业   75篇
金属工艺   8篇
机械仪表   14篇
建筑科学   13篇
能源动力   16篇
轻工业   29篇
无线电   13篇
一般工业技术   52篇
冶金工业   27篇
自动化技术   41篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   8篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2014年   6篇
  2013年   10篇
  2012年   16篇
  2011年   13篇
  2010年   15篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1986年   8篇
  1985年   9篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1965年   2篇
  1941年   2篇
  1920年   2篇
  1919年   3篇
排序方式: 共有296条查询结果,搜索用时 31 毫秒
1.
Schiffmann  Alexander  Jauk  Thomas  Knez  Daniel  Fitzek  Harald  Hofer  Ferdinand  Lackner  Florian  Ernst  Wolfgang E. 《Nano Research》2020,13(11):2979-2986

Plasmonic Ag@ZnO core@shell nanoparticles are formed by synthesis inside helium droplets with subsequent deposition and controlled oxidation. The particle size and shape can be controlled from spherical sub-10 nm particles to larger elongated structures. An advantage of the method is the complete absence of solvents, precursors, and other chemical agents. The obtained particle morphology and elemental composition have been analyzed by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS). The results reveal that the produced particles form a closed and homogeneous ZnO layer around a 2–3 nm Ag core with a uniform thickness of (1.33 ± 0.15) nm and (1.63 ± 0.31) nm for spherical and wire-like particles, respectively. The results are supported by ultraviolet photoelectron spectroscopy (UPS), which indicates a fully oxidized shell layer for the particles studied by STEM. The plasmonic properties of the produced spherical Ag@ZnO core@shell particles are investigated by two-photon photoelectron (2PPE) spectroscopy. Upon excitation of the localized surface plasmon resonance in Ag at around 3 eV, plasmonic enhancement leads to the liberation of electrons with high kinetic energy. This is observed for both Ag and Ag@ZnO particles, showing that even if a Ag cluster is covered by the ZnO layer, a plasmonic enhancement can be observed by photoelectron spectroscopy.

  相似文献   
2.
3.
4.
5.

Background  

Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines.  相似文献   
6.
Objective: It has been suggested that women have a better face recognition memory than men. Here we analyzed whether this advantage depends on a better encoding or consolidation of information and if the advantage is visible during short-term memory (STM), only, or whether it also remains evident in long-term memory (LTM). Method: We tested short- and long-term face recognition memory in 36 nonclinical participants (19 women). We varied the duration of item presentation (1, 5, and 10 s), the time of testing (immediately after the study phase, 1 hr, and 24 hr later), and the possibility to reencode items (none, immediately after the study phase, after 1 hr). Results: Women showed better overall face recognition memory than men (ηp2 = .15, p  相似文献   
7.
This paper is about flow-induced vibration (FIV) of disks in hard disk drives (HDD) influenced by two classical flow structures in fluid dynamics, Taylor Couette vortices (TCV) and Ekman layers. FIV is computed with a fully coupled commercial aerodynamics/structural code. The emphasis is on FIV of disks and geometries under conditions typical for high speed, server HDDs. In typical server drives computational fluid dynamic (CFD) analysis predicts the occurrence of TCVs in the disk to shroud clearance. TCVs typically do not occur in mobile and desktop drives. The main controlling non-dimensional parameters are the Reynolds number, the Taylor number and the aspect ratio of the disk to shroud clearance. The existence of Ekman layers on the disk surfaces is persistent. The Ekman layers and their radial return flow interact in a complex manner with the flow in the disk to shroud clearance. The turbulent viscosity between shrouded disks results from “bursting” phenomena that are typical for the flow field near the disk rims and shroud. The details of a turbulent burst are presented together with its momentary disk excitation effect. The benchmark case used is a fully shrouded set of two disks with a disk to shroud clearance and a disk thickness to shroud aspect ratio such that TCVs occur in the disk to shroud clearance. The TCVs interact with the Ekman layers such that the outer TCVs are continuously destroyed and recreated. An example is presented of fully coupled FIV of a two-disk axi-symmetric benchmark case. The two co-rotating shrouded disks attract aerodynamically: they deflect statically inward. The results also show the dynamic disk deformation dominated by the disk (0,0) “umbrella” mode. In addition, there is random disk deflection caused by the turbulent bursting. At server drive conditions and a 70 mm diameter disk the peak to peak deflection is approximately 20% of the mean deflection. Three dimensional effects are also presented such as wavy TCVs. In another benchmark with a cavity the flow near unshrouded disk edges is shown. In that case the pressure fluctuations can be an order of magnitude greater than in shrouded regions.  相似文献   
8.
9.
The performance of thick aluminophosphate molecular sieve layers for heat exchanger applications is evaluated. The aluminophosphate AlPO-18 (AEI structure type code) molecular sieve sorbent is coated on aluminium supports prior the sorption measurements. Two AlPO-18 samples with different morphological appearance, i.e. nano-sized crystals with monomodal size distribution and micron-sized crystals of varying sizes, are used to prepare layers with thickness in the range of 80–750 μm. As a binder component, polyvinyl alcohol (PVOH) was utilized in order to prepare mechanically stable layers, which are mechanically stable over numerous measuring cycles. The sorption measurements are conducted under canonical conditions at 40 °C. The AlPO-18 layers showed decreased mass flows with increasing the thickness. Additionally, the layers comprising nanosized crystals showed higher equilibrium loadings and faster kinetics compared to films based on micron-sized crystals. Following the kinetic studies of pressure, temperature and heat flow, it can be concluded that the heat transport is the rate limiting mechanism for thick aluminophosphate layers. Importantly, the diffusion limitation plays a role only for relatively thin microporous aluminophosphate layers (<200 μm). Below this thickness complete heat transfer is achieved within 2 min which allows fast heat exchanger cycles. Thus, the application of microporous aluminophosphate layers for heat transformation and storage applications is considered possible.  相似文献   
10.
The influence of external refractive index higher than that of silica on the transmission spectra properties of slanted fibre Bragg grating in investigated. An analytical method is presented for their potential use as refractometer for refractive index ranges beyond 1.45  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号